Monitoring and staging abdominal aortic aneurysm disease with pulse wave imaging.
نویسندگان
چکیده
The abdominal aortic aneurysm (AAA) is a silent and often deadly vascular disease caused by the localized weakening of the arterial wall. Previous work has indicated that local changes in wall stiffness can be detected with pulse wave imaging (PWI), which is a non-invasive technique for tracking the propagation of pulse waves along the aorta at high spatial and temporal resolutions. The aim of this study was to assess the capability of PWI to monitor and stage AAA progression in a murine model of the disease. ApoE/TIMP-1 knockout mice (N = 18) were given angiotensin II for 30 days via subcutaneously implanted osmotic pumps. The suprarenal sections of the abdominal aortas were imaged every 2-3 d after implantation using a 30-MHz VisualSonics Vevo 770 with 15-μm lateral resolution. Pulse wave propagation was monitored at an effective frame rate of 8 kHz by using retrospective electrocardiogram gating and by performing 1-D cross-correlation on the radiofrequency signals to obtain the displacements induced by the waves. In normal aortas, the pulse waves propagated at constant velocities (2.8 ± 0.9 m/s, r(2) = 0.89 ± 0.11), indicating that the composition of these vessels was relatively homogeneous. In the mice that developed AAAs (N = 10), the wave speeds in the aneurysm sac were 45% lower (1.6 ± 0.6 m/s) and were more variable (r(2) = 0.66 ± 0.23). Moreover, the wave-induced wall displacements were at least 80% lower within the sacs compared with the surrounding vessel. Finally, in mice that developed fissures (N = 5) or ruptures (N = 3) at the sites of their AAA, higher displacements directed out of the lumen and with no discernible wave pattern (r(2) < 0.20) were observed throughout the cardiac cycle. These findings indicate that PWI can be used to distinguish normal murine aortas from aneurysmal, fissured and ruptured ones. Hence, PWI could potentially be used to monitor and stage human aneurysms by providing information complementary to standard B-mode ultrasound.
منابع مشابه
Management of anesthesia in a patient with ruptured abdominal aortic aneurysm: A case report
Introduction: Abdominal aortic aneurysm is a multifactorial condition which associated with aging and atherosclerosis. During aneurysm surgery, hypotension after aortic clamp removing occure commonly that require specific treatments. This case report showes administration of blood and hemodynamic control methods after aortic unclumping during aortic aneurysm surgery. Patient: A 75–years-o...
متن کاملPulse wave imaging in normal, hypertensive and aneurysmal human aortas in vivo: a feasibility study.
Arterial stiffness is a well-established biomarker for cardiovascular risk, especially in the case of hypertension. The progressive stages of an abdominal aortic aneurysm (AAA) have also been associated with varying arterial stiffness. Pulse wave imaging (PWI) is a noninvasive, ultrasound imaging-based technique that uses the pulse wave-induced arterial wall motion to map the propagation of the...
متن کاملPulse Wave Imaging of Normal and Aneurysmal Abdominal Aortas In Vivo
The abdominal aortic aneurysm (AAA) is a common vascular disease. The current clinical criterion for treating AAAs is an increased diameter above a critical value. However, the maximum diameter does not correlate well with aortic rupture, the main cause of death from AAA disease. AAA disease leads to changes in the aortic wall mechanical properties. The pulse-wave velocity (PWV) may indicate su...
متن کاملA novel noninvasive technique for pulse-wave imaging and characterization of clinically-significant vascular mechanical properties in vivo.
The pulse-wave velocity (PWV) has been used as an indicator of vascular stiffness, which can be an early predictor of cardiovascular mortality. A noninvasive, easily applicable method for detecting the regional pulse wave (PW) may contribute as a future modality for risk assessment. The purpose of this study was to demonstrate the feasibility and reproducibility of PW imaging (PWI) during propa...
متن کاملFSI Simulations of Pulse Wave Propagation in Human Abdominal Aortic Aneurysm: The Effects of Sac Geometry and Stiffness
This study aims to quantify the effects of geometry and stiffness of aneurysms on the pulse wave velocity (PWV) and propagation in fluid-solid interaction (FSI) simulations of arterial pulsatile flow. Spatiotemporal maps of both the wall displacement and fluid velocity were generated in order to obtain the pulse wave propagation through fluid and solid media, and to examine the interactions bet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ultrasound in medicine & biology
دوره 40 10 شماره
صفحات -
تاریخ انتشار 2014